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crack. Inverting the order of integration in (4.15), we obtain 
a 

fy = $;-p(t)tdt 

It can be shown that 
0 

a 

s 'p(t)tdt= $xa3(1 +4X2) 

0 

Then the value of the critical load applied to the crack edges is 
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We examine a linear escape problem in which the pursuing player’s control is 
constrained in energy, while that of the escaping player, in absolute value. The 
game’s termination set is defined as the equality of the players’ geometric coor- 
dinates. We have obtained sufficient conditions for the pssibility of evasion from 
contact from any point of the phase space,not belonging to the game’s termination set, 
and sufficient conditions for the existence of an open set in the phase space.from 
any point of which the game can be terminated in finite time. 

Suppose that in the space fin (n > 2) the motion of the pursuing vector 5 and of the 
escaping vector y is described by the equations 
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x(p) + ulx(p-l) + . . . + up_1 x’ = u, 5 E R” (1) 
y(q) + b,y(Q-l) + . . . + b,_, y’ = v, y E Rn 

cc 

s (II. II) ds < p*, p>o; IVl<~, a>0 (2) 
0 

Here a,, . . ., $I, 4, . . ., b,_, are real numbers, u, 7) are control vectors chosen in 

a class of measurable vector-valued functions, satisfying constraints (2). Such controls 
are called admissible. The pursuit is considered to be ended at an instant t, if at this 

instant the equality x (ti) = y (tl) is first satisfied. We say that evasion from contact 

is nossible from the noint 
I A 

z#J = x(O), . . ., x(P-1) (O), y (O), . . ., y(“-‘) (0) E I? 
I’( PW) 

if at each instant t we can select the escaping control (’ (t) so that the equality z (t) = 
u (1) is not satisfied for any value of t whatsoever. It is assumed that when forming the 

control 2’ (t) the escaping knows the vectors 2 (t), y (t), z (t), Eqs. (1) and constraints 

(2). In addition, it is assumed that the pursuer’s control resource, i. e. 

p* (“) --z p - s (II. u) rzs 
0 

is known at each instant t . 

We introduce the following notation: z is the orthogonal projection operator from 

space K onto any fixed subspace R* and E (t) f nA (1) = zc (5 (t) - y (t)). The absolute 
value of the vector (z’(t), . . ., xfP-” (t), y’ (t), . . ., y”]-” (t)) is denoted by tl (1) and 
x (1) f (1 - ?l @))_I; integration with respect to 8 from 0 to t is denoted by angle 

brackets ((g (s))). 
Theorem. If P > P, then evasion from contact is possible from any point 

+ (A(0) + 0); evasion can occur in such a way that the following estimate holds. If 
p > q1 there exist three positive constants 0 0, e,, c, depending only on Eqs. (1) and 

conditions (2), a nondecreasing sequence e/, , and a sequence Tk --) + 00, depending on 
the evasion process 

a) I A (t) I Z Ed, t E lo, T,l; if l A (0) I > 8. 

b) I A (t) I > c ( I A 6’) I x (t)Y’q t E ro, T,l; if l A (0) 1 d $0 

c) I A (t) I > c (Q._~ X (QIq, t E [I’k, Tktll 

If p < q, these exists an open set in space Rn(~+s), from any point of which the pursuit 

can be completed in finite time. 

Proof. Suppose that at an instant T, the vector z ( Tk) is such that A (Tk) = 0, 
P” (Tk) > 0. 

1’. For any admissible controls u (t), v (t) = 27k specified on an interval [0, M J 

5 (ll'k + tj = x (cpl (G Tk) - cp2 (6 Tk)) - n (Vk - 11 (0) wfpl w 

P-l q-1 

91 (ts I’&) = 2 -fi (t) Ji)(Tk), ‘pz (t, Tk) = 2 pi (t) &Tk) 
i=O i=O 

where yi (t), Pci (t) are solutions of the equations (~3~~ is the Kronecker symbol) 



340 A.V.Mezentsev 

y(p) + uly’P-l) + . . . + ap_l y’ = 0, yp (0) = 6*l (3) 

l&n) + b,lP1) + . . . + b,_, /LL’ = 0, llLi(l) (0) = 6i[ 

I h (t) 1 < cp (Tk) tP-~-“‘~ (4) 

(c depends only on the solutions of Eqs. (3) ) . The number M is determined from the 

condition (~a_~ (s)) > 0 for t E 10, fifl. 
Let admissible controls u (t), ok be given on the interval [0, M] ; then by the Cauchy 

formula 
5 (Tk + t) = cpl (h Tk) + (Yp_r (s)u (t - s)) 

Y (Tk + t) = (Pa (t, Tk) + (cc,-, b-)) ok 

After projection onto R2 we obtain the equality 

% (Tk + 6=(P (6 Tk)-- n ( vk - (yp_l (s) u (t - s)) (pq-l (s))-l) &_l (d) 

9 @, Tk) = n @I (h Tk) - (Pa (6 Tk)) 

It is obvious that for t E 10, M] 
I tq (l+r (s)) I < Cl 

Applying the Cauchy-Buniakowski inequality, we find that inequality (4) is valid for the 

h (t) = (yp_r (s)u (t - s)) (pq-r (9)-l 

2’. Let Z be a finite-dimensional linear set of functions analytic on the interval 
[0, M] and r be a square defined by the inequalities 1 r* 1 < b, i = 1, 2. Then a 

positive number Y exists such that for any Y (t) = (Y1 (t), Y* (t)) whose components 
belong to Z, we can find a square I” c I? with side 2h such that the point 

% (T, + tj = Y (t) - ‘Y, (t+i (s)> (5) 

satisfies the condition I E(Tk i- t) I > vtQ for t E LO, Ml, a E I”. The proof of this is 

easily obtained by using the result of section (B) in Cl]. 

3’. Let I E ( Tk) 1 # 0 at some instant i”, , * then there exist a number 8, and a 
control ZJ (t) G uk such that the inequality 

I%(Tk+t)I>‘Q* (6) 

is satisfied for any admissible control u (t) for t E 10, ok] 
Consider the set Q = {nv, 1 v I < a}. !t is evident that Q is a circle of radius u with 

center at the origin of space R2. In the circle we inscribe a square r and in space R2 
we consider the curve (5) where Y (t) f cp (t, T). Suppose that the square I” C I? has been 

chosen in accordance with 2’ ; then we set 

(7) 

while for t E [O, Ok] we set the control v (t) equal to a constant vector 1 z’k 1 < CJ 
such that zvk is the center of square I’. In this case, for t E 10, S,] 

% (Tk -/- t) = t# (t, Tk) - a (t) (pq_.l (s)), % (t) = n (ok --- h (t)) 

From inequality (4) and equality (7) it follows that ) h (t) 1 < 3,. Therefore, the inclusion 
a (t) E I’ is fulfilled for t t 10, ok] . According to 2” this signifies the validity of in- 

equality (6). 
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4”. From the result in 3’ it follows that for any initial value z (Z’k), A (Tk) # 0, 
we can lead the point t (t) to the position where 

A (Tk + 9,) > I E (Tk + f&J I > vfhq = ek (8) 

at the instant T, + Ok by applying the special escape control. 

5”. There exists a positive constant c 0. depending only on Eqs. (l), such that for any 

position ‘2 (t), 0 < I A (Tk) I < e, by applying the special control v (t) for t E 10, Tk], 
we can so conduct the point z (‘Tk + t) that the inequality 

I A (Tk + 4 I > co (I A (Tk) I x (Tk + t))q (9) 

is satisfied. First of all we note that from Eqs. (1) with due regard to the condition 

P > q , follows the existence of constants a > 0, @ > 0 depending only on Eqs. (1) and 
number M, such that the inequalities 

X (Tk + VX ( Tk) > a* 1 A tTk + t) - A tTk) I < OX-’ (Tk) t 

are satisfied on the interval [O, MJ . Therefore, for t < I A (Tk) 1 x (Tk) / 28 

1 A tTk + t) 1 > I A (Tk) I/ 2 (10) 

Since the escaping employs the special escape control v (t) E 01, inequality (6) isvalid 

and. consequently, the inequality 

I A (Tk + t) I > (1 A tTk) I x tTk) / 28) XJ (11) 

is satisfied for t > I A (Tk) 1 x (Tk) / 20 . Inequality (9) follows from inequalities (lo), 

(11). 
6’. To prove inequalities (a), (b) and (c) of the theorem, we describe the evasion 

process. Let I A (0) I > &o = vO$, then up to the instant Z’, when first the equality 

1 A (I’,) I = E, is satisfied, the escaping chooses an arbitrary control; obviously, inequal- 

ity (a) is satisfied. At the instant T1 theconstraint on the pursuer’s control has the form 

Cm 

S(w)ds<p2- Ts’(ua)ds = ~"(7'1) 

T, 0 

We determine O1 by formula (7). It is evident that 1 A (T,) 1 < Ed = v&Q ; therefore, 

by applying the special escape control on the interval [T,, T, + e,] we obtain inequal- 

ity (c), where k = 1 , for t f [T,, T, + O,]. From inequality (8) it follows that the in- 

equality I A (T, + 0,) I > e1 holds at the instant T, + 8,. Therefore, the escaping em- 

ploys an arbitrary control up to the instant T, when first I A (T.J I = “1, Continuing to 
act in similar fashion, we obtain inequality (c), 

If I A (0) I d e,, then for t E [O, O,] the escaping employs the special escape control 

which, according to (9), yields inequality (b) for t &i lo, 6,J and I A (tl,) I > Ed. Apply- 

ing an arbitrary control for t E (O,, T,] , we obtain inequality (b). We act further just 

as described above. 
The proof of the second part of the theorem is based on the results of [Z]. 
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For two-dimensional and three-dimensional motions we prove the formal stabi- 

lity of the Lagrange solutions of the circular restricted three-body problem with 

a critical ratio of the masses of the primary bodies. 

1, We consider the motion of three material points, mutually attracting one another 
according to Newton’s law. The equations of motion of the problem admit particular 

solutions co~es~nding to a motion under which the three bodies form an equilateral tri- 
angle rotating in its plane about the center of mass of the three-body system. We exa- 

mine the stability of these solutions for the case of the circular restricted problem in 
which the ratio of the masses of the primary bodies is critical. 

Let the units of measurement be chosen so that the angular rate of rotation of the pri- 

mary attracting bodies, the distance between them, the sum of their masses, and the con- 
stant attraction are equal to unity. In these units the mass of the smaller of the attract- 
ing bodies is equal to p. We express the Hamiltonian function of the circular restricted 

three-body problem close to the triangle solution f, I in a series [lj and we write it in 

the form 
(1.1) 

,l ,l 5 
Hz = 2 (p;+ p9) + qz p1- q1p2 -I- 8 59 - h-q1ga - $ qzs -!. 

1/g 

Ua = & (111~1’ + 400krj?(1~ - 738rj1%z- i20 kq@ - I)ij.~~ -I- 

72q12qs2 -+ 960kqlq2qs2 + 792q2’q$ - 144q3*), f _7 3 y’3 c /I (1 - 2w 

where II, is a polynomial of degree no in the coordinates qi and the momenta pi, 
i =__ 1 2 3 . 

We’cohsider first the case of two-dimensional motion. The frequencies o1 and o,(o& 
oz) of an oscillating system with the Hamiltonian fZ, (ql, 92, ~1, &f satisfy the equation 

o* - 02 + Z’ib lL (1 - FL) = u 

To a first approximation we write the stability region in the form of the inequalities 

0 < p < (9 - v/s?) / 18 N 0.0385208... (I.21 


